Materialdatenblatt

Werkzeugstahl 1.2709

Werkzeugstahl in Pulverform, chemische Zusammensetzung entsprechen 1.2709, X 3 NiCoMoTi 18 9 5, 18% Ni Maraging 300

Email: info@3d-laserdruck.de

Internet: www.3d-laserdruck.de

Materialdatenblatt 1.2709

Beschreibung:

Martensitaushärtender Werkzeugstahl mit herausragender Dehn- und Streckgrenze zur Herstellung von Werkzeugeinsätzen und Formen mit konturnahen Kühlungen. Einfache Wärmebehandlung mit geringem Verzug, sehr gute Zähigkeit und Streckgrenze zeichnen diesen Stahl aus.

Eigenschaften	Anwendung
 Hohe Streckgrenze Härtbar bis 52 HRC Gut polierbar Gute thermische Leitfähigkeit Gut zerspanbar 	 Werkzeugbau Prototypenbau Serienteile Luft- und Raumfahrt Automotive uvm.

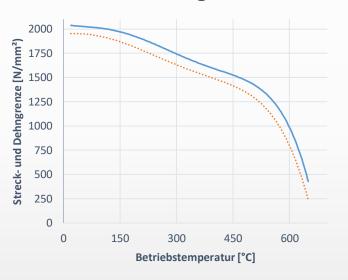
Telefon: 07121/147 89 - 0

Telefax: 07121/14789-89

Chemische Zusammensetzung:

Bestandteil	Richtwert [%]
Fe	Rest
Ni	17,0 – 19,0
Со	8,50 – 10,0
Мо	4,50 – 5,20
Ti	0,80 - 1,20
С	≤ 0,03
Si	≤ 0,10
Mn	≤ 0,15
Р	≤ 0,010
S	≤ 0,010
Cr	≤ 0,25

Materialdatenblatt 1.2709


Physikalische Eigenschaften:

Dichte [g/cm³]	8,0 - 8,05
Magnetisierbarkeit	gut
Elektr. Widerstand bei 20°C [Ω·mm²/m]	ca. 1
Mittlerer Wärmeausdehnungsbeiwert bei 20°C [10 ⁻⁶ · K ⁻¹]	10,3
Dauerbetriebsfest bis	ca. 400 °C

Wärmeleitfähigkeit

22 21 Ausdehnungsbeiwert [W/mK] 20 19 19,0 18 18,6 17 16 15 14 14,2 13 12 100 500 600 0 200 300 400 Temperatur [°C]

Warmfestigkeit

info@3d-laserdruck.de

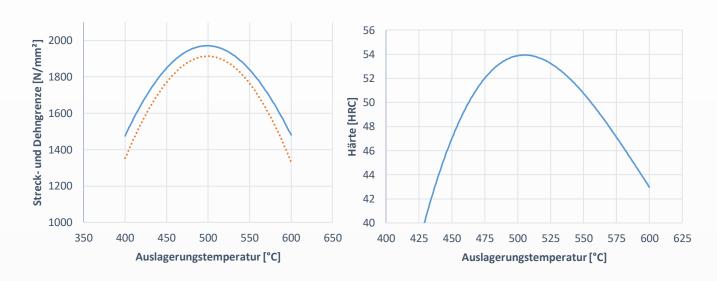
Internet: www.3d-laserdruck.de

Wärmebehandlung:

Um die mechanischen Eigenschaften von 1.2709 gezielt zu beeinflussen wird der Stahl bei 820 °C – 850 °C lösungsgeglüht mit anschließender Abkühlung in Wasser. Daraufhin muss der Stahl bei 490 °C über 6 Stunden warmausgelagert werden. Die Abkühlgeschwindigkeit ist 2 °C/min. Ab 200 °C kann das Bauteil im Ofen ungeregelt abgekühlt werden. Schwund von 0,09 % muss beachtet werden.

Telefon: 07121/14789 - 0

Telefax: 07121/14789-89



info@3d-laserdruck.de

Internet: www.3d-laserdruck.de

Materialdatenblatt 1.2709

Aushärtung:

Technische Daten:

Erreichbare Bauteilgenauigkeit

kleine Bauteile	ca. ± 0,1 mm
große Bauteile	ca. ± 0,2 %
Kleinste Wandstärke	ca. 0,4 – 0,5 mm
Schichtstärke	30 – 50 μm
Oberflächenrauhigkeit	
nach dem Bau	R _z = 60μm ± 20 μm
nach dem Mikrostrahlen	$R_z = 30 \mu m \pm 10 \mu m$
nach dem Polieren	R _z < 1 μm
Bauteildichte nach Fertigungsprozess	> 99,7 %

Telefon: 07121/14789 - 0

Telefax: 07121/14789-89

Email: info@3d-laserdruck.de

Internet: www.3d-laserdruck.de

Materialdatenblatt 1.2709

Mechanische Eigenschaften¹:

Zugfestigkeit [N/mm²]²	wie gebaut	nach WB
horizontale Richtung (XY)	1.100 - 1.250	1.900 –2050
vertikale Richtung (Z)	ca. 1.100	
Streckgrenze [N/mm²]²		
horizontale Richtung (XY)	950 – 1.000	ca. 1.950
vertikale Richtung (Z)	ca. 1.000	
Bruchdehnung [%]		
horizontale Richtung (XY)	11 – 13	ca. 4
vertikale Richtung (Z)	ca. 5 – 6	
E-Modul [kN/mm²]		
horizontale Richtung (XY)	typ. 220	ca. 240
vertikale Richtung (Z)	typ. 210	
Härte [HRC] ³	33 – 37	50 – 52

Hinweis:

Die angegebenen Werkstoffkennwerte sind Abhängig von Maschine, Pulverwerkstoff, Parametereinstellungen sowie anderen Faktoren wie die Anisotropie der Bauteile. Sie bieten daher keine ausreichende Grundlage zur Bauteilauslegung. Diese Abhängigkeit der Bedienstrategie spiegelt sich in einer gewissen Streuung der Ergebnisse für lasergeschmolzene Erzeugnisse wieder. Somit können bestimme Eigenschaften des Produktes oder eines Bauteils weder gewährt noch garantiert werden. Diese Angaben dienen lediglich als Richtwerte. Zur Überprüfung der mechanischen Eigenschaften können jederzeit Probekörper angefordert werden.

Telefon: 07121/147 89 - 0

Telefax: 07121/14789-89

¹bei Raumtemperatur

² Zugversuch nach DIN EN 50125

³ Härteprüfung nach DIN EN ISO 6508-1